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Continuous control with deep 
reinforcement learning

Based on a paper by Lillicrap, Timothy P., et al. 2016



Context
Continuous control

• Deep Q-Learning already successful 

• DQN used to solve Atari suite 

• Novelty: DQN applied to 
continuous space



Q-Learning

• Off-policy temporal difference 
control algorithm 

•  

• Q directly approximates q* 

• Optimizes over action space



DQN
Q-Learning framework with a neural net

• Solves problems with high-
dimensional observation space 

• Limited to low-dimensional 
discrete action space 

• Physical control -> continuous 
high-dimensional action spaces 

• Discretization: number of actions 
exponential w.r.t DOF 

• Fine-control also increases number



DQN

• Naive discretization may throw away action space structure 

• To find action that maximizes action-value function, iterative optimization at each 
step is needed 

• Also uses replay buffer

Continuous case



Deep Deterministic Policy Gradient

• DPG -> actor-critic 

• DDPG <- DPG + DQN 

• Model-free, off-policy, actor-critic 
also using deep function 
approximators 

• Learns policies in continuous high-
dimensional action spaces



DPG

•  [Actor update] 
• maintains a parameterized actor function µ(s|θµ) which specifies the current policy 

by deterministically mapping states to a specific action 

• The critic Q(s, a) is learned using the Bellman equation as in Q-learning with L2 
weight decay 

• Non-linear function approximators -> converge no longer guaranteed

Deterministic Policy Gradient



Function approximation

• Network is trained off-policy with samples from a replay buffer to minimize 
correlations between samples 

• Network is trained with a target Q network to give consistent targets during 
temporal difference backups 

• Batch normalization

Learning value functions using large, non-linear function approximators is difficult and unstable



DDPG

• Replay buffer like DQN 

• Copies actor/critic networks to a target network and updates target network slowly 

• Normalizes scales of input by batch normalization. Normalize each dim across 
samples in each mini batch to have unit mean and variance 

• Action repeats of length 3



Behavioral policy
Ornstein-Uhlenbeck process

• µ’ (st) = µ(st|θµt ) + N 

• Exploration policy = actor policy + 
noise 

• Used to generate temporally 
correlated exploration for 
exploration efficiency in physical 
control problems with inertia 

• A 3D simulation with θ = 1.0, σ = 3, μ = 
(0, 0, 0) and the initial position (10, 
10, 10)



DDPG
Continued



Tasks



Experiments & Results

• 20 classic physics tasks 

• Cartpole swing-up, dexterous manipulation, legged locomotion and car driving 

• Involve complex multi-joint movements, unstable and rich contact dynamics, and 
gait behavior 

• Policies can be learnt end-to-end 

• Policy performance competitive to planning with full access, sometimes exceed 
planning



Results

Batch normalization 
Target network 
Target net and batch normalization 
Target net from pixel input only



Conclusion

• Target network + batch normalization necessary 

• Learning from pixels can be as good as from states. Conv layers might provide a 
separable state space. NN learns the necessary transformation 

• Expanded model-free RL to continuous domain



https://www.youtube.com/watch?v=pOFli1Zlk4k


Discussion


